Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.10.24.513517

ABSTRACT

A detailed understanding of the molecular features of the neutralizing epitopes developed by viral escape mutants is important for predicting and developing vaccines or therapeutic antibodies against continuously emerging SARS-CoV-2 variants. Here, we report three human monoclonal antibodies (mAbs) generated from COVID-19 recovered individuals during first wave of pandemic in India. These mAbs had publicly shared near germline gene usage and potently neutralized Alpha and Delta, but poorly neutralized Beta and completely failed to neutralize Omicron BA.1 SARS-CoV-2 variants. Structural analysis of these three mAbs in complex with trimeric spike protein showed that all three mAbs are involved in bivalent spike binding with two mAbs targeting class-1 and one targeting class-4 Receptor Binding Domain (RBD) epitope. Comparison of immunogenetic makeup, structure, and function of these three mAbs with our recently reported class-3 RBD binding mAb that potently neutralized all SARS-CoV-2 variants revealed precise antibody footprint, specific molecular interactions associated with the most potent multi-variant binding / neutralization efficacy. This knowledge has timely significance for understanding how a combination of certain mutations affect the binding or neutralization of an antibody and thus have implications for predicting structural features of emerging SARS-CoV-2 escape variants and to develop vaccines or therapeutic antibodies against these.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.13.491770

ABSTRACT

The SARS-CoV-2 BA.1 and BA.2 (Omicron) variants contain more than 30 mutations within the spike protein and evade therapeutic monoclonal antibodies (mAbs). Here, we report a receptor binding domain (RBD) targeting human antibody (002-S21F2) that effectively neutralizes live viral isolates of SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) with IC50 ranging from 0.02 - 0.05 ug/ml. This near germline antibody 002-S21F2 has unique genetic features that are distinct from any reported SARS-CoV-2 mAbs. Structural studies of the full-length IgG in complex with spike trimers (Omicron and WA.1) reveal that 002-S21F2 recognizes an epitope on the outer face of RBD (class-3 surface), outside the ACE2 binding motif and its unique molecular features enable it to overcome mutations found in the Omicron variants. The discovery and comprehensive structural analysis of 002-S21F2 provide valuable insight for broad and potent neutralization of SARS-CoV-2 Omicron variants BA.1 and BA.2.

3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.03.22268599

ABSTRACT

Purpose: We investigated SARS-CoV-2 mRNA vaccine-induced binding and live-virus neutralizing antibody response in NSCLC patients to the SARS-CoV-2 wild type strain and the emerging Delta and Omicron variants. Methods: 82 NSCLC patients and 53 healthy adult volunteers who received SARS-CoV-2 mRNA vaccines were included in the study. Blood was collected longitudinally, and SARS-CoV-2-specific binding and live-virus neutralization response to 614D (WT), B.1.617.2 (Delta), B.1.351 (Beta) and B.1.1.529 (Omicron) variants were evaluated by Meso Scale Discovery (MSD) assay and Focus Reduction Neutralization Assay (FRNT) respectively. We determined the longevity and persistence of vaccine-induced antibody response in NSCLC patients. The effect of vaccine-type, age, gender, race and cancer therapy on the antibody response was evaluated. Results: Binding antibody titer to the mRNA vaccines were lower in the NSCLC patients compared to the healthy volunteers (P=<0.0001). More importantly, NSCLC patients had reduced live-virus neutralizing activity compared to the healthy vaccinees (P=<0.0001). Spike and RBD-specific binding IgG titers peaked after a week following the second vaccine dose and declined after six months (P=<0.001). While patients >70 years had lower IgG titers (P=<0.01), patients receiving either PD-1 monotherapy, chemotherapy or a combination of both did not have a significant impact on the antibody response. Binding antibody titers to the Delta and Beta variants were lower compared to the WT strain (P=<0.0001). Importantly, we observed significantly lower FRNT50 titers to Delta (6-fold), and Omicron (79-fold) variants (P=<0.0001) in NSCLC patients. Conclusions: Binding and live-virus neutralizing antibody titers to SARS-CoV-2 mRNA vaccines in NSCLC patients were lower than the healthy vaccinees, with significantly lower live-virus neutralization of B.1.617.2 (Delta), and more importantly, the B.1.1.529 (Omicron) variant compared to the wild-type strain. These data highlight the concern for cancer patients given the rapid spread of SARS-CoV-2 Omicron variant.


Subject(s)
Neoplasms , Lung Neoplasms , Carcinoma, Non-Small-Cell Lung
SELECTION OF CITATIONS
SEARCH DETAIL